
N87-26543
BLOCK ITERATIVE RESTORATION OF ASTRONOMICAL IMAGES

WITH THE MASSIVELY PARALLEL PROCESSOR

Sara R. Heap
Laboratory for Astronomy and Solar Physics

Goddard Space Flight Center

Don J. Lindler

Advanced Computer Concepts
Potomac Maryland

ABSTRACT

We describe a method for algebraic
image restoration capable of treating
astronomical images. For a typical 500
x 500 image, direct algebraic
restoration would require the solution
of a 250,000 x 250,000 linear system.
We use the block iterative approach to
reduce the problem to solving 4900
121x121 linear sytems. We have
implemented the algorithm on the
Goddard Massively Parallel Processor,
which can solve a 121 x 121 system in
approximately 0.06 seconds. Here, we
show examples of our results for
various astronomical images.

Keywords: image restoration,
constrained least-squares, block
iteration

1. INTRODUCTION

The discrete model of linear image
degradation is specified by the
equation:

b = Hx + n (1)

where b and x are the pixel values of
the degraded and original undegraded
images stacked into column vectors, H
is a matrix constructed from the

impulse response (or point spread
function) of the degradation, and n is
an unknown additive noise vector. The
object of restoration is to determine
x, given b and possibly information on
the properties of n. If the point
spread function used to construct H is
not known for the given optical-

detector configuration, it must be
estimated from the blurred image b.
The point spread function is most
easily estimated from point sources
(i.e. stars) on the blurred image.

Since H may be ill-conditioned or
singular, and only the statistical
properties of the noise are known,
there are many solutions, _, for x
which satisfy equation (1). In order to
obtain a reasonable solution for x, it
is necessary to utilize properties of
x. The success of the restoration will
therefore depend on the ability to
model and apply to the restoration,
known or assumed properties of the
desired solution. Properties of x may
consist of its "smoothness" or the
restriction that all values in x be
positive.

Some advantages of algebraic image
restoration are:

1) The point spread function may be
spatially variant;
2) If a constrained least squares
method is used, the applied constraints
may be varied from pixel to pixel to
make maximum use of the known image
properties;
3) Missing or bad pixel values in the
blurred images can be easily handled
wi£hout directly attempting to repair
their values;
4) Noise properties can vary from pixel
to pixel.

eR_._EDhN6 PAGE BLANK NOT FILMI_D
99

The main disadvantage of algebraic
image restoration is the size of the
linear system. For a 500 x.500 pixel
image, H is a 250,000 x 250,000
matrix. Even with the most powerful
computers available (including the
MPP), a direct solution of the system
would be impossible. In the next
section, we describe a technique -- the
block iterative method, of solving
large linear systems.

2. THE BLOCK ITERATIVE RESTORATION
ALGORITHM

2.1 Block Jacobi Iteration

In most astronomical images, the
point spread function has a much
smaller spatial extent than the image,
so it is appropriate to work on the
image locally. We therefore divide the
image into blocks and restore each
block separately, using values from the
previous iteration as estimates of the
unblurred image values outside the
block. In most instances the blurred
image is a good choice for the starting
or zeroth iteration. This type of
iteration is called block Jacobi or
group Jacobi (Young 1971) iteration and
can be formulated in matrix notation as
follows.

Consider the blurred image, b,
divided into m blocks of equal size Bi,
i = l,m.

B1 B2 ...

B_

Ri- 1 Ri Rio1

..e

Bm-1 Bm

Stack the elements of each block and
place them into a vector:

B1
B= B2.

Ignoring the noise for now, we write
the system as:

HX=B ._

where H is partitioned into blocks:

H_

Hll H12

H21 H22

Hml Hm2

Him

H2m

Hmm

and X contains the restored values,
blocked in the same manner as B. If
the image were divided into blocks of n
pixels each, then the blocks Hi_
would have size n x n. The block
Jacobi method can now be written as:

Hiix_+Z = Bi - Z Hij X_ j (2)
j:I

i=1 ,m, and where X_ is the stacked
values for iteration r of block i. If
we define the vector on the right hand
side of equation (2) as BMODi (i.e. the
blurred image less contributions from
outside the block as estimated from the
previous iteration of the undegraded
image), the linear system for block i
can now be written as:

Hii X_+1 : BMODi . (3)

Using the block Jacobi method, we
can reduce the problem to solving m
smaller systems of size n x n of the
form:

H x :b (4)

where H is Hii for block i; x is X_+1
for block i, iteration r+l; and b is
BMODi for block i.

100

The solution for block i now
requires the solution of an n x n
linear system. For example, to restore
a i00 x I00 pixel image divided into
m=lO0blocks, each of size, nxn=lOxlO,
the largest system to be solved would
have Hii of size I00 x 100. Since
solutions of linear systems require on
the order of n3 operations, the block

approach compares favorably to the
direct solution of the I0,000 x I0,000

system. For a spatially invariant
point spread function, the problem is
further reduced since Hii will be
identical for all i=l,m.

If a constrained least squares
approach is used to solve the linear
system, the solution will converge to
acceptable results even with a block
size as small as the full-width-at-
half- maximum (FWHM) of the point
spread function. Overlapping the
blocks (accepting only the central
portion for the next iteration) gives
faster convergence or may produce
convergence when no overlap results in
divergence.

2.2 Image Constraints

The block Jacobi method reduces the
restoration to solution of many smaller
linear systems, but it does not address
the ill-conditioned nature of H or the

presence of noise in the blurred
image. An ill-conditioned matrix means
small changes in b, caused by noise,
yield large changes in the solution x =
H-I b. In this section, we show how
constrained solutions can handle these

problems.

In most images, the data vary
smoothly except at isolated points or
edges. For example, an image of a star
field will vary smoothly, except at
locations of individual stars. We can
make use of this image propert_y,
smoothness, by applying a constrained
least squares fit. Specifically, we
minimize a linear operator liQxJt
(i.e. The sum of the squares in Qx),
where Q is a matrix designed to control

smoothness or other characteristics of
the image (Twomey 1963, Philips 1962).
For example, we can control smoothness
in the one dimensional case by
minimizing the second difference in the
solution subject to some other
constraint. If the statistical
properties of the noise are known, we
could minimize the second difference
such that the norm of _JHx-bJl =
llnil; that is to say, the difference
of the blurred image and the solution
reconvolved with the point spread
function should have the same
properties as the noise. In this case
(minimize the second difference), Q
would have the form:

Q _._

0 0

-1 2 -1

-1 2 -1

-1 2 -1

0 0

We use the method of Lagrangian
multipliers, sometimes called the
method of undetermined multipliers, to
make the constrained least-squares
fit. The solution of x is then given
by (Andrews 1977):

x = (H T H + 7 QT Q)-I HT b

where _ is the reciprocal Lagrangian
multiplier. The value of 7 can be
iteratively selected to control the
amount of constraint in the solution.

The solution using Lagrangian
multipliers place no restrictions on
the form of Q. This flexibility allows
the development of a variety of
constraints depending on the known
properties of the image.

Figure 1 shows the application of
this constrained least squares filter
for a test case with different values

of _2. The subscript 2 is used to

I01

indicate that the constraint is the
minimumsecond difference. Note in
figure I.C-I.E that as 72 increases,
noise in the solution decreases, but
"ringing" at the edges increases. The
ringing results from an inappropriate
constraint at edges: the second
difference should have a large value at
an edge and should not be
minimized. We therefore minimize the
second difference at every location
except the edges by setting the rows of
Q corresponding to the edge locations
to zeros. Figure I.F shows a
restoration of the same test image when
the second difference constraint is not

applied at the edges. A significant
improvement results.

A direct extension of the method to
two dimensional images is to minimize
the Laplacian at each point. The
Laplacian operator has a value at each
pi×el equal to four times the pixel
value minus the values of the four
immediate neighboring pixels. We use
the subscript, l, to indicate the
presence of the Laplacian constraint.
As before, we set rows of the matrix Q
to zero when the Laplacian constraint
is not appropriate (i.e. edges or point
sources).

The constraint need not be
binary: we can vary the amount of
constraint between no constraint to
full constraint for any pixel, simply
by multiplying the appropriate row in Q
by a constant factor running from 0 to
I.

Another useful constraint is to
minimize the difference of x from a
trial solution (i.e. minimize
flp-x!l). The solution using
Lagrangian multipliers is given by
(Twomey 1963):

x = (H T H + 7tl) -1 (H T b + 7t P)

where p is the trial solution, I is the
identity matrix, and 7t is the
reciprocal Lagrangian multiplier. The
subscript, t, will be used to identify

102

A

0 I0

15(,

50 _.
0 --- i

n

15(,

5_

u l
0

.:_:, 30 40 50 60 70

..... B

I0 _'-I.'_ 30 40 50 6g ,0

...... C

i-- I I i
10 J-_ SO 40 50 60 ,0

i i i i i i

FI_ I I I _I.""----"1_"_ x_ 1

 AAA
,, A

e 10 _ _ 4_ _ _ rr_

kq
0 Irl 20

J.
SO 40 50 60 70

Figure 1. Effect of Langrangian
multipliers. (A) original image;
(B) image blurred with a Gaussian PSF
(_=2.0 pixels) and noise added (:=1
DN); (C) restoration with 72=0.1;
(D) restoration with 72=0.001;
(E) restoration with 72=0.0001;
(F) restoration with 72=0.1 with
constraint removed at the two edges.

the constraint as minimization of the
solution from a trial solution. Some
possible choices for the trial
solution, p, are a constant value (i.e.
all zeros) or the blurred image
itself. In either case, the
ill-conditioned nature of H can be
avoided and reasonable solutions
obtained.

Multiple image constraints can be
applied simultaneously:

st p)

where a different value of 7 can be
selected for each constraint.

Selection of the reciprocal
Lagragian multipliers is done by trial
and error with the evaluation of 7 by
visual inspection of the results for
various values of 7 or by examination
of the difference of blurred image and
the solution reconvoled with the point
spread function. This difference
should have the same properties as the
noise.

2.3 Missing or Bad Data Values

A problem results when trying to
restore images with missing or bad data
values (i.e. cosmic ray hits or bad CCD
columns). If they are not taken into
account in the restoration, the bad
values will propagate to a larger
portion of the output solution. To some
extent, every point in the solution
depends on all other values in the
blurred image.

One method of handling bad pixels
is to attempt to repair them before
restoration by interpolating from
neighboring values. This approach is
successful only if the repair is
accurate. An alternative method is to
make no attempt at prior repair but
handle them in the restoration
process. In this approach, the
restored image will have more data
values than the blurred image, and the

linear system is underdetermined and,
therefore, singular (i.e. no direct
inverse exists). To ignore bad data
values, we set their corresponding rows
in matrix H to zeros. This method of
implementation (as opposed to removing
row H creating a non-square
underdeterminimed system) allows us to
keep the matrix H square and decrease
the complexity of implementation.
Keeping H square in no way alleviates
the problem of singularity. However,
using the constrained least squares
solution, the problem of singularity
can be alleviated and reasonable
solutions obtained.

3. IMPLEMENTATION OF THE ALGORITHM

The procedure for block iterative
restoration described in section 2 is
actually carried out over three
computers. We use our laboratory VAX
750 with Gould DeAnza image display for
interactive analysis of the blurred and
restored images. We then use a local
area network to copy the blurred image
and point-spread function from the
laboratory computer over to the MPP VAX
780 host computer. We use the latter
machine to prepare input to the MPP,
invoke the MPP, and reconstruct the
output from the MPP into restored
images. Preparation mainly involves
dividing the various images (blurred
image, constraint image, and trial
solution) into blocks of 11xii pixels,
stacking them into vectors, and
formatting them for access by the
FORTRAN driver. Reconstruction of MPP
output is the reverse procedure. The
MPP itself is saved for the computer-
intensive tasks of matrix inversion and
matrix multiplication.

The primary software system that
we use for interactive image analysis
is Interactive Data Language (IDL,
Research Systems Inc., Denver CO). To
generate a single PSF from the
intensity distributions of stars on the
blurred image, we use DAOPHOT by Peter
Stetson at Dominion Astrophysical
Observatory.

I03

Wehave also installed IDL on the
MPPVAX-host as the user's high-level
language to guide the restoration. The
following IDL statements constitute the
complete set of commandsto restore an
image stored as the variable, BLUR,
with a point-spread function, PSF, and
a block-size of ii and step-size of 7
(i.e. the blocks overlap, and only the
central 7x7 portion of a block is
retained). C is an image controlling
the constraint for each pixel, varying
from 0.0 (no constraint) to 1.0 (full
constraint) for each pixel. The two
reciprocal Lagrangian multipliers, 71
and st, are both set to 0.001. TRIAL is
the trial solution, and X is the first
estimate of the restored image. The
routine, dnext, invokes the next
iteration. The last statement reads in
the output from the MPPstored in the
file, 'OUT.TMP', into the variable, X.

IDL> setblur,BLUR,PSF,11,7
IDL> setgamma,.001, .001
IDL> setcon, C
IDL> settrial, TRIAL

IDL> dnext, X
MPP

IDL> bresult, X

Transfer of data and computations
are carried out by the FORTRANdriver
on the VAX780 and Parallel Pascal and
assembly language on the MPP. The
appendix gives the PP code for matrix
inversion and matrix multiplication
implemented on the MPP.

Typically one iteration takes a
few minutes of CPU-time whenthe
VAX/MPPis not bogged downwith other
users. This time does not include
wait-time for the MPP,overhead in
transferring the data, etc. Since it
is possible to examine an imagewhile
the MPP task invoked by DNEXT is
running, the turn-around time is short
enough that interactive work is a
reasonable proposition. For
restoration, it is essential: the eye
can spot minute but systematic

104

imperfections in the restored image as
well as catch glaring errors.

The matrix multiplication
algorithm given above takes 0.03
seconds to multiply two 128x128
matrices, and 0.06 seconds to invert

the same size matrix. A typical image
(512x512 pixels) requires t_
solution of about 5000 linear systems
of size 121x121. Consequently, one
iteration (block size of 11xll pixels,
step size of 7 pixels in both line and
sample directions, spatially varying
constraints) takes about 11
CPU-minutes. On a VAX 11/750, the
identical procedure would take over 3
cpu-days!

4. APPLICATION OF THE ALGORITHM

We now describe the practical
application of the algorithm, by
considering four types of astronomical
images requiring restoration.

Case 1: Clusters of point sources.
Examples are double stars or crowded
star fields, such as globular clusters.
For the brighter sources, specialized
observational techniques, such as
speckle interferometry, are obviously
superior approaches to higher
resolution. For fainter sources in

crowded fields, such as Cepheids in
other galaxies, these techniques may
not be feasible, and deconvolution of
the image data at hand may be
necessary.

Case 2: Point-source juxtaposed to or
superposed on an extended source_ where
the point source is much briqhter than
the underlying extended source. The
extreme example of this case is the
quasar/host-galaxy, in which the
nucleus of the galaxy (the quasar) has
a surface brightness "10 times that of
the underlying galaxy. Even the far
wings of the quasar's point-spread
function swamp the light from the
galaxy, making it difficult to
ascertain what kind of galaxy plays
host to a quasar. Deconvolution of a

quasar image holds the promise of
separating, in effect, the quasar from
the galaxy so that the galaxy can be
examined directly.
structure, such as spiral arms,
deconvolution will enhance the
structural detail.

If the galaxy has

Case 3: Point-source juxtaposed to or
superposed on an extended source, where
the point-source is much fainter than
the underlyinq extended source. This
situation occurs in "deep sky" Images,
where the peak core brightness of a
galaxy may be only 1% of the underlying
sky. Astronomical seeing conditions or
some other blurring mechanism may push
t h e "nose" of a faint galaxy below the
detection threshold. Conversely,
deconvolution of the image may extend
the detection limit.

Case 4: An extended source with
structure. There are numerous examples
of this case, such as planetary
atmospheres or galaxies with dust lanes
or jets. Usually, the structure is too
arbitrary or complex to deduce the
detailed physical structure via the
route o f convolving the point-spread
function with some analytical model.
Direct deconvolution is necessary.

In the following section, we show
examples of each of these cases, paying
particular attention to selection of
the constraint factors, which as we
noted earlier, are often a matter of
judgement.

5. EXAMPLES

5.1 Detection and photometry of objects
i n a crowded field (image courtesy, T.
Stecher, GSFC).

The UV rocket image of galaxy MlOl
(figure 2, upper left) suffers from a
motion blur due to instabilities in the
rocket's pointing system. Most sources
i n the image are OB/HII associations,
which can be considered point sources
at this resolution. It is o f
astronomical interest to make

photometric measurements o f these HI1
reg ions .

Figure 2 (upper right) shows the
restoration using a constant
constraint, y7=0.01 and yt=O.Ol, for
all pixels in the image. The blurred
image served as the zeroth iteration
and as the trial solution. Some
increased resolution is evident. We
then used a simple thresholding
technique to locate the HI1 regions in
the first iteration (upper right image)
and made a second iteration with the
constraints removed at the locations o f
the detected HI1 regions. Also in the
second iteration, we increased y t by a
factor of 10 (for reasons explained in
the next paragraph). As shown in figure
2 (lower left) the HI1 regions are
better resolved, so that fluxes of
individual HI1 regions can now be
estimated.

Figure 2. Ultraviolet Image of M l O l .
Upper Left Original, Blurred Picture;
Upper Right: First Iteration (with constant constraints);
Lower Left: Second Iteration (with variable
constraints).

105

Figure 3. Computer-Generated Star Field.
Left: Original, Blurred Image;
Right: Restored Image.

We used a computer-generated star
field (figure 3) to investigate the
accuracy of detection and photometry
that can be achieved in a restored
image. The left image shows a blurred
star field with a point spread function
equal to the sum of two Gaussians, one
with O = 2.0 pixels, the other with U=
4.0 pixels. The latter has a peak flux
of 10% of the first. Three hundred
stars were generated at random
positions and with random magnitudes.
Magnitudes ranged from 443 peak counts
for the dimmest star to 90,750 peak
counts for the brightest star. In an
attempt to make the simulation
realistic, we constructed each star
individually using an analytical form
of the point spread function, so that
star centers fall .at arbitrary
positions between pixel centers. We
simulated counting-statistic noise by
adding Gaussian- distributed random
numbers scaled by the square root of
the counts in each pixel. In the first
iteration, we used constant constraints
for all pixels, with 71 is set to
0.001. We experimented with different
values of Y t and found that setting y t
at 0.01 gives the best results. In the

second iteration (figure 3, rlght), we
removed the constraints at the
locations o f stars detected on the
first iteration.

A comparison between star detection
in the blurred image and the restored
image shows no significant improvement
for the stars with a neighbor Yess than
3.5 pixels away. The most significant
improvement in detection is for the 54
stars having neighbors between 3.5 to
5.0 pixels away (i.e. less then the
full width-half maximum of the point
spread function, which is approximately
5 pixels). Only 21 out of 54 stars are
detected in the blurred image, while 48
stars are detected in the restored
image. The average photometric error
for these stars is 8%. For stars with
separations greater than 5.0 pixels,
the average error i s 6%.

5.2 Deconvo7ution o f the quasar,
2130+099 (11 Zw 136) (courtesy, T.
Heckman, U. Md.)

This quasar is a relatively bright
(mv=14.8), low-redshift (z=0.06)
quasar. Figure 4 (top) compares the
cross- sectional profile of the quasar
with that of a nearby star on the same
image. The difference between the two
profiles is the contribution of the
host galaxy. The aim of the
restoration is to distinguish the
host-galaxy from the quasar.

We found that it is essential to
center the point-spread function
exact7y on the quasar (i.e. to a
hundredth of a pixel); otherwise the
misalignment causes ringing in the
restored image. We used the intensity
distribution of a nearby star to
represent the point-spread function at
the location of the quasar. To the
extent that there is noise in this
distribution or the PSF is spatially
variant, the assumed PSF will be in
error and generate spurious data in the
restored image.

135 PAGE IS
ox POOR QUALITY

As 71 increases, the noise in the
solution decreases but ringing starts
to set in. We need to impose the
constraint for the host galaxy to avoid
excess noise and to release the quasar
from the Laplacian constraint to avoid
the ringing. Thus, we could set the
constraint image to 1.0 everywhere
except at the location of the quasar
and its immediate neighbors.

The host galaxy is not much brighter
than the background sky, so we let the
trial solution be given by the sky
brightness (254 counts per pixel)
everywhere except for at the quasar,
where we set it to 3.5xi05 (computed as
the quotient of the maximum count-level
in the quasar (21990) divided by the
maximum count-level of the PSF (0.07).

The restored image should have
properties somewhere between the
original (blurred) image and the trial
solution. Thus, we set the first
estimate, X, of the restored images by
calculating:

X= BLUR - T B PSF + T ,

where the middle term at right is the
convolution of the trial image and the
point-spread function.

The cross-sectional profile of the
restored image is shown in figure 4
(bottom). The quasar is now seen for
what it is: a galaxy with an
exceedingly bright nucleus. The
morphological structure of the galaxy
is consistent with its interpretation
as a spiral galaxy.

The contrast level between the
quasar and the host galaxy is more than
1000. Thus, "ringing" at the 1% level
in the restored image would completely
wipe out the galaxy image. This is why
deconvolution of the quasar image is
such a difficult problem. Deconvo-
lution in one dimension has been
carried out before (Bendinelli et al.
1984), but a full 2D deconvolution such
as this requires the MPP.

1
(÷5

1OOOO

IOO0

IO0
0

QUASAR 21 .]0+099

I I I I
5 10 15 20 2_

S_PUE

QUASAR 2130+099

E_6

I
E÷5

._ 1O0O0

1000

100
:s-10

ii \

-- ----_f

l
0 5 10

Figure 4. Cross-sectional profiles of
the quasar, 2130+099. Top: profile of
quasar (solid line) and nearby star
(dashed line). Bottom: profile of
restored image (solid line) and
Qriginal, blurred image (dashed line).

107

5.3 Restoration of Voyager images of
Jupiter and Ganymede. (courtesy, E.
Dan ielson , CalTech)

The left-hand side of figure 5 shows
images of Jupiter and Ganymede taken by
Voyager. A point spread function was
constructed using an image o f a star
taken with Voyager.
right show the restoration after two
iterations with a constant constraint
with ~7 and ~t set to 0.03 (selected by
visual examination o f results with
various values for the reciprocal
Lagragian multipliers). The improved
resolution in the images on the right
will be important for analysis of
weather patterns on Jupiter and study
of planetary detail with images from
the Hubble Space Telescope.

The images on the

Figure 5. Voyager Images of Jupiter and Ganymede.
Left: Original, Blurred images;
Right: Restored Images.

108

REFERENCES

Andrews, H. C., Hunt, 8. R., Digital
Image Restorat f on , (Prentice Hal 1 : New
Jersey), pp. 148-149 (1977)

Bendinelli, O., Lorenzutta, S.,
Parmeggiani, G., and Zavatti, F.,
"Deconvolution o f photographic images
uf quasars from point spread
functions", Astron. Astrophys. 128,
337-342 (1984).

Philips, 0. L., "A technique for the
numerical solution of certain integral
equations of the first kind", J. ACH,
9, 84-97 (1962).

Smith, E. , Heckman, T., Bothun, G.,
Romanishin, W . , Balick, B., "On the
nature of QSO host galaxies",
Astrophys. J . 306, 64-89 (1980).

Twomey, S. ",On the numerical solution
of the Fredholm integral equations of
the first kind", J . ACM 10, 97-101
(1963).

Young, 0. M., "Iterative solution of
large 1 inear systems", (Academic Press:
New Yourk), pp. 434-437 (1971).

APPENDIX

A.1 Matrix Inversion

The matrix inversion implemented on
the MPP in Parallel Pascal uses

Gaussian elimination with no pivoting.
The following Parallel Pascal code will
invert the matrix A, size M + 1, where
X, COLK, and ROWK are 128 x 128
floating point arrays. ROWFLAG and
COLFLAG are 128 x 128 boolean arrays.
ROW INDEX and COL-INDEX are 128 x 128
integer arrays which contain the row
index and column index of each element
respectively (indices run from 0 to
127). Initially, X contains the matrix
A to be inverted and upon completion X
will contain B, the inverse of A.
Columns in X will be referred to by
columns in matrix A or B, whichever is
appropriate since both matrices are
stored in X.

1. for K:= 0 to M do
2
3
4
5
6
7
8.
9.
10.

11.

begin
ROWFLAG:= ROW--INDEX = K;
COLFLAG:= COL-INDEX = K;
rowbroad(X,COLK,128,COLFLAG);
where COLFLAG do X:= O;
where COLFLAG and ROWFLAG do X:= 1;
where ROWFLAG do X:= X/COLK;
colbroad(X,ROWK,128,ROWFLAG);

where not ROWFLAG do X:=
X-COLK*ROWK;

end;

Line 1 begins a loop on each column K
in the matrix X. Line 3 sets the
boolean variable ROWFLAG true for

elements in row K and false everywhere
else. Line 4 sets COLFLAG true for
elements in column K. ROWFLAG and
COLFLAG will be used as masks for

subsequent operations. Line 5 takes
the Kth column in matrix A and

propagates each element along its
corresponding row. We no longer need to
retain the Kth column of matrix A.
This column can now be used to store
the Kth column in matrix B, which
initially is set to 1 in row K and zero
elsewhere. This is done by lines 6 and

7 which set column K to all zeros (line
6) and then set bkk to 1 (line 7).
Line 8 divides row K by the value in
position akk. (Remember that line 5
had propagated the value of akk along
the entire row K). Line 9 will take
the Kth row and propagate each element
along its corresponding column. Line 10
is the real work horse and subtracts

aik * row k from every row except k in
A. Since B is also stored in X, the
same operations are automatically
performed on B. This step would have
produced zeros in column k of the
original matrix A in every location
except akk which would have the value
of one. Upon completion of the loop for
all columns, the matrix X will contain
the inverse.

A.2 Matrix Multiplication

The matrix product of two arbitrary
size square matrices A and B can be
written as:

C = (A i O Bi)

where n is the number of rows and
columns in the matrices, and(_)
indicates element by element
multiplication (not matrix
multiplication). The following
Parallel Pascal code gives the
implementation of the algorithm on the
Massively Parallel Processor. A and B
are the input matrices and C will
contain the result. M is the number of
rows and columns minus one. COLFLAG
and ROWFLAG are boolean variables and
AI and BI are matrices used to store

the propagated columns and rows of A
and B. ROW-INDEX and COL-INDEX are
defined in Section A.I.

1. C:= O;
2. for I:= O,M do
3. begin
4. ROWFLAG:= ROW-INDEX = I;
5. COLFLAG:= COL-INDEX = I;
6. rowbroad(A,AI,128,COLFLAG);
7. colbroad(B,BI,128,ROWFLAG);
8. C:= C + AI * BI
9. end;

109

